Простые фотоэлектрические системы с прямым преобразованием энергии.
Простая фотоэлектрическая система может осуществить накачку воды и вентиляцию. Фотоэлектрические модули вырабатывают наибольшее количество энергии в ясные, солнечные дни. Простые фотоэлектрические системы сразу же используют произведенный постоянный ток для работы насоса или вентилятора. Такие системы обладают преимуществами для решения простых задач. Энергия производится там и тогда, когда она необходима, поэтому прокладка проводов, аккумулирование и системы контроля не требуются. Небольшие - до 500 ватт - системы весят менее 70 кг, так что их легко перевозить и монтировать. Установка занимает всего лишь несколько часов.
Солнечные насосные установки.
Насосные фотоэлектрические системы являются долгожданной альтернативой дизельным генераторам и ручным насосам. Они качают воду именно тогда, когда она особенно нужна - в ясный солнечный день. Солнечные насосы просто устанавливать и эксплуатировать. Небольшой насос может установить один человек за пару часов, причем ни опыт, ни специальное оборудование для этого не нужны.
Среди достоинств солнечных насосов:
- минимальное техническое обслуживание и ремонт;
- легкость установки;
- надежность;
- возможность модульного наращивания системы.
Использование солнечной энергии фундаментальным образом отличается от традиционных электрических и топливных систем. По этой причине солнечные насосы также отличаются от обычных. Они работают на постоянном токе. Количество энергии зависит от интенсивности излучения Солнца. Поскольку дешевле хранить воду (в баках), чем энергию (в аккумуляторах), солнечные насосы отличаются низкой производительностью, медленно качая воду в течение всего светового дня.
Использование простых эффективных систем - ключевой фактор использования солнца для подъема воды. Для этой цели применяются специальные маломощные насосы постоянного тока без аккумуляторов и без преобразователей тока. Современные двигатели постоянного тока хорошо работают при переменной мощности и скорости. Они нуждаются в небольшом ремонте (замене изношенных частей) не ранее, чем через 5 лет после их установки. Большинство солнечных насосов, применяемых для малых потребителей (жилые дома, мелкая ирригация, содержание скота) - это поршневые насосы. Они отличаются от более быстрых центробежных насосов (в т.ч. струйных и погружных).
В системах большего объема применяются центробежные, струйные и турбонасосы. Электронные согласующие устройства позволяют солнечным насосам включаться и работать в условиях низкой освещенности. Это позволяет использовать энергию солнца напрямую, без аккумуляторных батарей. Может применяться устройство слежения за Солнцем, при помощи которого панели остаются нацеленными на Солнце на протяжении всего дня, от восхода до заката, что позволяет продлить пригодный для эксплуатации световой день. В аккумуляторных баках обычно хранится запас воды на 3-10 дней на случай облачной погоды. Солнечные насосы используют малое количество электричества. Чтобы увеличить объем получаемой воды, используется более эффективный насос и более продолжительный световой день, а не больше электроэнергии или увеличенная скорость.
Там, где фотоэлектрические насосы сравниваются с дизельными, их относительно высокая первоначальная стоимость компенсируется экономией топлива и снижением затрат на техобслуживание. Исследования экономической эффективности фотоэлектрических насосных установок подтверждают, что они часто оказываются экономически более выгодными, чем дизельные насосы - в зависимости от конкретных условий.
Фотоэлектрические системы с аккумуляторами.
Простые решения имеют определенные недостатки. Самый главный из них - это тот, что фотоэлектрический насос или кондиционер воздуха могут работать только в дневное время и при свете солнца. Для компенсации этого недостатка к системе подсоединяют аккумулятор. Он заряжается от солнечного генератора, запасает энергию и делает ее доступной в любое время. Даже в самых неблагоприятных условиях и в отдаленных пунктах фотоэлектрическая энергия, сохраняемая в аккумуляторах, может питать необходимое оборудование. Благодаря аккумулированию электроэнергии фотоэлектрические системы служат надежным источником электропитания днем и ночью, в любую погоду. Фотоэлектрические системы, оснащенные аккумулятором, во всем мире питают осветительные приборы, сенсоры, звукозаписывающее оборудование, бытовые приборы, телефоны, телевизоры и электроинструменты.
Солнечный модуль вырабатывает постоянный ток, обычно с напряжением 12 В. Есть множество электроприборов - ламп, телевизоров, холодильников, вентиляторов, инструментов и т.д., которые работают от постоянного тока в 12 В. Однако большинство бытовых электроприборов все же потребляют 220 В переменного тока. Фотоэлектрические системы с аккумулятором можно приспособить для питания оборудования постоянного или переменного тока. Желающие пользоваться обычными приборами переменного тока должны добавить к системе, между аккумулятором и нагрузкой, блок регулирования мощности - так называемый инвертор. Хотя в процессе преобразования постоянного тока в переменный некоторое количество энергии теряется, благодаря инвертору фотоэлектрическая энергия может использоваться наравне с привычным коммунальным энергоснабжением (питать бытовую технику, осветительные приборы или компьютеры).
Система устроена так: фотоэлектрический модуль соединен с аккумулятором, а тот, в свою очередь, с нагрузкой. В дневные часы фотоэлектрические модули заряжают аккумулятор. Энергия по мере необходимости поступает на нагрузку. При помощи простого контроллера заряда аккумулятор заряжается в нужной степени. При этом продлевается срок его жизни, обеспечивается защита от перегрузки и от полной разрядки. Аккумулятор способен расширить сферу применения фотоэлектрической панели, но требует определенного обслуживания. Аккумуляторы фотоэлектрических систем похожи на автомобильные, они требуют осторожности в обращении и хранении. Их необходимо защищать от воздействия низких и высоких температур.
Солнечная батарея с аккумулятором поставляет пользователю электричество тогда, когда оно необходимо. Количество накопленной электроэнергии зависит от мощности фотоэлектрических модулей и от типа аккумулятора. Расширение модуля или добавление аккумуляторов увеличивает стоимость системы, поэтому для определения ее оптимального размера нужно тщательно изучить энергопотребление. Хорошо спроектированная система определяет оптимальный баланс стоимости и удобства при удовлетворении потребности пользователя в электричестве, а также возможность расширения системы.
Промышленные фотоэлектрические установки.
Уже давно фотоэлектрические системы применяются в коммунальном электро-, газо- и водоснабжении, доказав свою экономичность. В большинстве своем они имеют небольшую мощность, и включают в себя аккумуляторы для накопления энергии. Они выполняют множество функций: от питания сигнальных огней на опорах ЛЭП для оповещения самолетов до контроля качества воздуха. Они продемонстрировали надежность и долговечность фотомодулей в коммунальном хозяйстве и подготовили почву для внедрения мощных систем.
Энергоснабжающие предприятия с успехом используют возможности фотоэлементов с точки зрения увеличения генерирующей мощности и удовлетворения все возрастающих требований к экологической и производственной безопасности. Крупные солнечные электростанции, состоящие из множества фотоэлектрических батарей, оказались весьма выгодными для энергокомпаний. Их создание занимает меньше времени, чем строительство традиционных электростанций, так как солнечные панели легко устанавливать и соединять. Компания может строить фотоэлектрические станции там, где в них есть потребность, так как размещение фотобатарей гораздо проще, чем выбор участка для традиционной электростанции. И, в отличие от традиционных электростанций, их можно расширять по мере необходимости. Наконец, фотоэлектрические станции работают бесшумно, не потребляют ископаемого топлива и не загрязняют воздух и воду. К сожалению, фотоэлектрические станции пока еще не очень динамично входят в арсенал коммунальных сетей, что можно объяснить их особенностями. При современном методе подсчета стоимости энергии, солнечное электричество все еще значительно дороже, чем продукция традиционных электростанций. К тому же фотоэлектрические системы вырабатывают энергию только в светлое время суток, и их производительность зависит от погоды.
Поэтому при планировании энергосистемы нужно учитывать эти особенности фотоэлектрической станции, чтобы правильно вписать ее в существующую систему производства, передачи и распределения энергии. Фотоэлектрические станции, тем не менее, занимают все больше места в планах энергопроизводителей. Например, добавление фотоэлектрической системы в непосредственной близости от потребителя помогает избежать потерь энергии, связанных с передачей на большие расстояния. Следовательно, фотоэлектрическая система имеет большую ценность для компании, если она расположена возле потребителя. Их можно также устанавливать на тех участках распределительной системы, которые обслуживают районы с быстро растущим населением. В этом случае фотоэлектрические установки устраняют необходимость увеличивать протяженность линий электропередач. Установка фотоэлектрических систем возле подстанций, распределяющих энергию, может предотвратить перегрузку расположенного на них оборудования.
Фотоэлементы не похожи ни на один источник энергии, который когда-либо использовался коммунальными предприятиями. Они требуют крупных начальных вложений, зато стоимость топлива в дальнейшем равна нулю. Постройка угольных и газовых электростанций вначале обходится дешевле (относительно их производительности), но потом они требуют постоянных расходов на закупку топлива. Цена на топливо колеблется, и неизвестно, как она будет изменяться в будущем. Цены на ископаемые виды топлива будут расти, тогда как общая стоимость фотоэлементов (да и других возобновляемых источников энергии), как ожидается, будет продолжать падать, особенно если принимать во внимание их преимущества для окружающей среды.
Сколько стоит электроэнергия, выработанная фотоэлектрической системой?
Однозначный ответ, без учета особенностей построения сетей, дать сложно. Многие малые фотоэлектрические системы, питающие несколько лампочек и телевизор, гораздо дешевле, чем альтернатива - продление линии электропередач, замена и утилизация батарей, либо применение дизель-генератора. Стоимость электричества, произведенного на крупных установках, способных обеспечить электропитанием жилой дом, выражается в стоимости одного кВт·ч. Она зависит от первоначальной стоимости системы, условий возврата кредита (для выплаты первоначальной стоимости), расходов на эксплуатацию системы, ее ожидаемого срока эксплуатации, и от общей эффективности, которая так же зависит от солнечной инсоляции, то есть, от количества солнечніх дней в году. При сегодняшей стоимости солнечных панелей, типичных условиях установки и среднем сроке эксплуатации 20 лет стоимость солнечного электричества составляет от 10 до 15 евроцентов за кВт·ч.
Сколько места занимает фотоэлектрическая система?
Наиболее распространенные модули (из монокристаллического кремния) производят 100-120 ватт на квадратный метр (Вт/м2). Таким образом, модуль площадью один квадратный метр производит достаточно электричества, чтобы питать одну 100-ваттную лампочку. Если же говорить о промышленных масштабах, фотоэлектрическая станция, занимающая квадратный участок земли со стороной около 160 км могла бы обеспечить электричеством все Соединенные Штаты. Лучшим решением, однако, является расположение фотоэлектрических модулей на крышах зданий или встраивание их в фасадные стены.